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Molecular docking identification of plant-derived inhibitors  

of the COVID-19 main protease 

COVID-19 cases increase at a high rate and become dangerous in recent months. As a consequence, some 

healthcare and research organizations are attempting to find an effective cure for the COVID-19 outbreak. 

Many natural products have been reported to have powerful activity against COVID-19 in recent research stud-

ies. The primary aim of this article is to establish natural bioactive compounds with suitable antiviral properties. 

Lui et al. have reported in their study that SARS-Cov-2 main protease is present in a crystalline structure known 

as a novel therapeutic drug target. It is important to inhibit SARS-Cov-2 main protease to stop the replication 

of viral proteins. In this study natural compounds were screened using molecular modeling techniques to in-

vestigate probable bioactive compounds that block SARS-Cov-2. From these studies many natural compounds 

were found to have the potential to interact with viral proteins and show inhibitory activity against COVID-19 

main protease (Mpro) and these natural compounds were also compared to known antiviral drugs such as 

Saquinavir and Remdesivir. Besides that, additional research is needed before these potential leads can be de-

veloped into natural therapeutic agents against COVID-19 to fight the epidemic. 

Keywords: Natural compounds, SARS-Cov-2, Efficacy, Drug target, Molecular modeling, Viral proteins, 

Mpro, Binding affinity. 
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Introduction 

World Health Organization (WHO) declared that the novel coronavirus infection is pandemic, and this 

infection going high day by day in all regions of the world [1]. This pandemic caused by novel coronavirus, 

SARS-Cov-2 (Severe Acute Respiratory Syndrome Coronavirus-2) was firstly reported in Wuhan, (China) in 

December 2019 [2]. As world's population is growing high it leads to the occurrence of many chronic diseases 

as well as lifestyle-related diseases. So this problem can be overcome by focusing on traditional herbal medi-

cines to enhance as well as improve quality of life [3]. Herbal medications are commonly used by most people 

because they have long-term safety, good efficacy, and low toxicity, and they have shown remarkable results 

in the treatment of a variety of viral infections. Still, there is no specific treatment against COVID-19 infection. 

So to control the spread of COVID-19 infection, many research works are carried out to find effective as well 

as preventive therapy against COVID-19 infection [4]. So that many researchers taking an effort to design new 

treatments to avoid COVID-19 infection for examining secondary metabolites obtained from plants by using 
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molecular docking to study inhibition of enzyme-like main protease (Mpro) as well chymotrypsin-like protease 

(3CL pro), which is responsible for viral infection [1, 5]. 

Molecular docking is one of the best approaches to design, develop, and evaluate new treatment. There 

are various new therapeutic techniques developed to find new entities, but protease enzyme inhibitor is one of 

the novel therapeutic strategies, which are selected from natural bioactive compounds to find out effective 

medicine with minimum side effects. In the present study we analyze ten ligands for their binding affinity [5]. 

Most of the selected ligands are essential parts of many edibles from India and other regions. They show 

efficacy against the COVID-19 6LU protease. The main motive of the present study is to find out the ability 

of these ligands to inhibit COVID-19 main protease and to design natural products that can be effective in the 

treatment of COVID-19 infection. Ligands selected for docking analysis are present in spices and show toler-

able binding affinity with COVID-19 6LUT protease. Further, these ligands are compared with synthetic drugs 

having remarkable antiviral properties, such as Remdesivir and Saquinavir [6]. 

Molecular docking studies are generally used for the analysis of complex structures obtained by the in-

teraction through ligand and target molecules. Three-dimensional structure and probable binding sites are de-

termined by molecular docking methods. The molecular docking approach is commonly used to identify sev-

eral binding interactions such as enzyme-substrate interaction, lipid-protein interaction, drug-enzyme interac-

tion, etc [7, 8]. The molecular modeling technique is widely used in various structure-based drug designs 

(SBDD), because of its characteristic to determine actual binding conformation in ligand and target site. Be-

cause of its ability to generate accurate conformation between ligand and target, it is rapidly used to identify 

binding conformation in target and drug, and therefore it is an important tool in rational drug designing [9]. 

In the 1980s, the molecular docking technique constituted a crucial mechanism because of the develop-

ment of 1st algorithm. Molecular modeling analysis particularly analyzes the binding affinity of the target 

molecule with ligand and based on this; it may help to suggest a potential treatment against a specific disease. 

In these cases in-silico approach of molecular docking become a faster technique. In silico approach helps to 

reduce the time and cost of the process for the identification of complex structures and binding techniques. So 

in drug discovery molecular docking with in silico approach becomes a very quick and common easy to apply 

method [10, 11]. In general molecular docking process is shown in Figure 1. 
 

 

Figure 1. Мolecular docking process in general 

The software develops an algorithm, in which the conformation of the ligand is determined after perform-

ing docking analysis. The binding affinity resulted in a negative value of ∆G (in terms of units Kcal/mol). The 

binding energy shows a combination of Van der Waals as well as electrostatic energy, which concerning the 

interaction between ligand molecule and target molecule [14]. Also, in drug designing, the rigid system can be 

used, in which translational and rotational space in six dimensions can be identified for the fitting of ligand 

and particular binding structure. The research-based section represents a higher area of interest in molecular 
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modeling studies throughout recent decades. This is also true in the case of molecular modeling methods or 

computational methods for prediction [15]. 

The preliminary work in the area of molecular docking studies was initially performed using structural 

shape contacts and then Kuntz applied a shape matching strategy to identify potential conformations. After 

successful initiating work by Kuntz, various docking approaches were developed using Fourier transfor-

mations algorithms [16]. 

Types of docking analysis 

Rigid body docking. In this type of molecular docking both molecule and receptor assumed as rigid. The 

occurrence of modifications in structure possesses degrees of freedom. This approach represents an example 

of Zdock [14]. 

Semi-flexible docking. This is the method of docking in which their improvement in a rigid body is dock-

ing for identification of side chains and potential torsion angles. This method of docking is different from the 

Fourier transformation method. This new transformation was obtained by the HADDOCK protocol [15]. 

Flexible docking. This type of docking uses two logarithmic approaches: systematic incremental plotting 

and stochastic. The first approach is commonly used to develop binding conformations based on the ligand 

position and binding in all possible areas. These are for example: DOCK [16], Flex [17], Glide [18], Hammer-

head [19], LUDI [20], Surflex [21]. In stochastic algorithms, there is improvement in computational methods. 

These are, for example, DARWIN [22], GOLD [23], AutoDock [24], Carlo [25]. 

Experimental 

Data collection. The structure of COVID-19 3CL pro or Mpro (Having PDB ID: 6LU7) were taken in 

PDB format from (https://www.rcsb.org/) [26]. Also, some part of this study was performed by the SwissDock 

web server [27, 28], which incorporates an automated in silico molecular docking procedure based on the 

EADock ESS docking algorithm [29]. The active binding sites of the protease enzyme were found by using 

the CASTp (http://sts.bioe.uic.edu/castp/index.html?3igg) [30]. 

Three-dimensional (3D) structures of the selected ligands were taken in SDF format from the https://pub-

chem.ncbi.nlm.nih.gov/ website [29]. A known anti-HIV drug Saquinavir was used as a positive control for 

comparative docking analysis. 

Molecular Docking. The molecular docking studies analyze the mechanism of interaction between ligand 

and receptors. These mechanisms of interactions between ligand and receptor play a significant role in the case 

of drug discovery. In molecular modeling, docking analysis is a technique that is used to analyze stable com-

plexes formed by the binding of two molecules and adaptation between them [31]. 

The protease file was prepared for COVID 19 6LU7 protease by using Autodock 4.2 [32]. Using A chain 

of protease, the macromolecule was produced by removal of a water molecule and addition of hydrogen bond. 

For further studies of analysis, the file was saved in PDBQT format. The calculation of binding affinity was 

done by using AutoDock–Vina [33]. The 3D structure of interaction between ligand and receptor was detected 

by using PyMOL [34]. 

In this study we used flexible docking. Rigid-body docking, semi-flexible docking and flexible docking 

are three different types of docking procedures, but it was found that flexible-ligand docking shows significant 

results as compared to rigid body docking and semi-flexible docking 

Results and Discussion 

The present study is based on an analysis of ten selected bioactive compounds derived from Indian me-

dicinal plants, and also there is a comparison of the herbal compound with known antiviral drugs based on 

binding affinity. The binding affinity of extracted bioactive compounds from plants with COVID-19 protease 

6LU7 and their molecular structures are shown in Table [6, 35]. 
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T a b l e  

Representation of docking results including binding affinities of natural products 

Compound Ligand source 
Molecular for-

mula 

Binding 

affinity 
Structure 

1 2 3 4 5 

Gingerol Ginger 

(Zingiber officinale) 

C17H26O4 –7.95 

 
Nimbin Neem 

(Azadirachta indica) 

C30H36O9 –8.17 

 
Piperin Black and white pepper 

(Piper nigrum, Piper 

longum and Piper offici-

narum) 

C17H19NO3 –6.98 

 
Aloesin Aloe vera (Aloe Ferox, Aloe 

barbadensis) 

C19H22O9 –8.79 

 
Withaferin A Ashwagandha (Acnistus ar-

borescens, Withania somnif-

era, and Withania somnifera 

Dunal) 

C28H38O6 –8.05 

 
Apigenin Apple (Malus domestica), 

Red pepper (Capsicum an-

nuum), Thyme (Thymus vul-

garis), 

Garlic (Allium sativum). 

C15H10O5 –7.8 

 
Coriandrin Coriander (Coriandrum sa-

tivum) 

C13H10O4 –6.4 

 
Curcumin Turmeric (Curcuma longa) C21H20O6 –7.0 
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C o n t i n u a t i o n  o f  T a b l e  

1 2 3 4 5 

Glycyrrhizin Licorice  

(Glycyrrhiza glabra) 

C42H62O16 –7.3 

 
Quercitin Onion (Allium cepa), Buck-

wheat (Fagopyrum esculen-

tum), Green tea (Camellia 

sinensis). 

C15H10O7 –7.3 

 
Remdesivir Antiviral drug C27H35N6O8P −8.32 

 
Saquinavir Anti-HIV drug C38H50N6O5 –9.2 

 
 

Most of the selected bioactive products have anti-malarial, anti-viral and other similar activities [29]. The 

binding affinities of selected natural products range between –6.4 Kcal/mol (Binding affinity of Coriandrin) 

and –8.79 Kcal/mol (Binding affinity of Aloesin), as shown in Figure 2 [6, 35]. 

Coriandrin is categorized as essential oil derived from Coriandrum sativum. It is found in seed, stem, and 

leaf of Coriandrum sativum [36]. Coriandrin [C13H10O4] possesses many therapeutic activities such as antivi-

ral, antifungal, antioxidant, anthelmintic as well as anxiolytic [37]. 

The main bioactive constituent Aloesin (C19H22O9) is derived from fresh leaves of aloe (Aloe Ferox, Aloe 

barbadensis) and also has antioxidant, antibacterial, anti-inflammatory, and immunomodulatory effects [35]. 

Glycyrrhizin, as well as licorice, is found in Glycyrrhiza glabra, which is a potential immunomodulator and 

has other therapeutic effects such as hepato-protective, neuroprotective, anti-inflammatory, antineoplastic ac-

tivities; it shows binding affinity of –7.3 Kcal/mol with COVID-19 protease [38, 39]. A steroidal bioactive 

constituent of Ashwagandha Withaferin A (C28H38O6) has antiviral and antibacterial activities and is obtained 

from Acnistus arborescens, Withania somnifera, and Withania somnifera Dunal and shows –8.05 Kcal/mol 

binding affinity with COVID-19 protease [40]. Curcumin is a primary bioactive compound found in turmeric 

which consists of curcuminoids as secondary metabolites which are extracted from dried rhizomes of Curcuma 

longa from the Zingiberaceae family. Curcumin (C21H20O6) exhibits known anti-inflammatory, antimicrobial 

and antioxidant properties has –7.0 Kcal/mol binding affinity with protease [41]. 

Nimbin is a triterpenoid compound extracted from neem (Azadirachta indica) and it shows the binding 

affinity of –8.17 Kcal/mol with protease. Nimbin (C30H36O9), which is a bitter compound, shows many bio-

logical activities such as potential antibacterial, antiviral, antipyretic, fungicidal, and anti-inflammatory activ-

ities [42]. Gingerols are phenolic and the most abundant pungent compounds present in ginger, show  

–7.95 Kcal/mol binding affinity with COVID-19 proteases. Gingerol is the main bioactive compound found in 
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Ginger (Zingiber officinale), which belongs to the Zingiberaceae family. Gingerol (C17H26O4) has powerful 

antioxidant and anti-inflammatory effects [41]. 

 

 

Figure 2. 3D visualization of docking analysis of 6LU7 protease binding with (a) Gingerol, (b) Nimbin, (c) Piperine,  

(d) Aloesin, (e) Withaferin, (f) Apigenin, (g) Curcumin, (h) Quercitin, (i) Coriandrin, (j) Glycyrrhizin, (k) Saquinavir 

Apigenin is a flavonoid found in many plants Apple (Malus Domestica), Thyme (Thymus vulgaris), 

Chamomile (Matricaria chamomilla), Red pepper (Capsicum annuum), Garlic (Allium sativum var. sativum), 

etc [41]. It is a flavones class compound with a wide range of activities such as antiviral, antibacterial, antiox-

idant, and strong anti-inflammatory activities. Apigenin (C15H10O5) shows –7.8 Kcal/mol binding affinity. Pip-

erin is a pungent component found in black pepper and belongs to the vanilloid family of compounds [43]. 

Piperin is extracted from dried unripe fruit of black and white pepper (Piper nigrum, Piper longum, and Piper 

officinarum). Piperine (C17H19NO3) has potent antioxidant, anti-inflammatory, and antitumor properties and 

shows greater (–6.98 Kcal/mol) binding affinity with COVID-19 protease [37], whereas quercitin has  

–7.3 Kcal/mol binding affinity with protease. Quercetin (C15H10O7) is a flavonoid compound mainly found in 

onions, cherries, grapes, citrus fruits, which is obtained from various sources such as onion (Allium cepa), 

green tea (Camellia sinensis), apple (Malus Domestica), buckwheat (Fagopyrum esculentum) and possess an-

tioxidant, antiviral, anticancer, cardiovascular, hepatoprotective and anti-inflammatory activities [41, 44]. 

Remdesivir is a known antiviral drug whereas saquinavir is an anti-HIV drug; both are subjected for 

analysis of binding affinity with COVID-19 protease by using a molecular docking approach. This study shows 

that Remdesivir (C27H35N6O8P) has –8.32 Kcal/mol and Saquinavir (C38H50N6O5) has –9.2 Kcal/mol binding 

affinity [45]. In summary, it shows that some of the selected natural products exhibit greater binding affinity 

with COVID-19 protease compared to known antiviral drugs, remdesivir and saquinavir [45, 46]. In this study 

we have conducted molecular docking studies used to identify the potential of herbal products which are iso-

lated from plants. Substances taken for the study show inhibitory action of COVID-19 main protease [27]. We 

have studied 10 herbal drugs and their comparison with two reported antiviral drugs. Molecular docking anal-

ysis of these products helps to identify their binding potency with COVID-19 protease 6LU7 and their inhibi-

tion extent [6]. These docking studies show that some of the selected natural products show powerful inhibition 
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based on their binding affinities. Aloe vera shows a greater binding affinity among all selected herbal drugs. 

Also, other natural products such as glycyrrhizin, curcumin, coriandrin, and apigenin show potential inhibition 

of COVID-19 protease [47]. The plot of Binding affinity in comparison with natural compounds is shown in 

Figure 3. 

 

 

Figure 3. A plot of binding affinity extracted bioactive compounds from Indian herbal plants and a few drugs  

for comparison of inhibition potential against COVID-19 protease 

Conclusions 

All of these natural bioactive compounds are biologically safe and have a high binding potential. 

Saquinavir is already reported as an anti-HIV drug for inhibition of replication of SARS-Cov-2 protease, also 

Remdesivir is known for inhibition of replication of protease but it has reported hepatotoxicity in some pa-

tients. Docking studies show that some of the selected natural extracts show greater COVID-19 protease inhi-

bition potential compared to these known antiviral drugs. Some of the identified natural products show prom-

ising results in these studies and may require additional investigation. Because they are safer than synthetic 

drugs, these natural medicines can be used as important alternatives to synthetic treatments in the prevention 

of COVID-19 infection. These findings could become a significant starting point for drug development and 

provide great promise to develop potent therapeutics against COVID-19 infection. 
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Молекулалық қондыру әдістерімен COVID-19 негізгі протеиназасының 

өсімдіктік ингибиторларын анықтау 

Кейінгі айларда COVID-19 жағдайлары тез артып, қауіпті бола бастауда. Нәтижесінде бірнеше 

медициналық және ғылыми ұйымдар COVID-19 індетінің тиімді емін табуға тырысуда. Соңғы 

зерттеулерге сәйкес, көптеген табиғи өнімдердің COVID-19-ға қарсы белсенділігі жоғары. Мақаланың 

негізгі мақсаты — вирусқақарсы қасиеттері бар, табиғи түрде кездесетін биоактивті қосылыстарды 

анықтау. Луи және басқалар өз зерттеулерінде SARS-Cov-2 протеазасының негізгі емдік препаратқа 

нысана ретінде белгілі кристалды құрылымда болатынын хабарлады. Вирустық ақуыздардың 

репликациясын тоқтату үшін SARS-Cov-2 негізгі протеазасын тежеу маңызды. Бұл зерттеуде табиғи 

қосылыстар SARS-Cov-2 бөгейтін ықтимал биоактивті қосылыстарды зерттеу үшін молекулалық 

модельдеу әдістерінің көмегімен сыналды. Осы зерттеулердің нәтижесінде көптеген табиғи 

қосылыстардың вирустық ақуыздармен әрекеттесу және COVID-19 (Mpro) негізгі протеазасына қарсы 

ингибиторлық белсенділігі бар екендігі анықталды. Табиғи қосылыстар саквинавир мен ремдесивир 

сияқты белгілі вирусқақарсы препараттармен салыстырылды. Бұл потенциалды індетпен күресу үшін 

COVID-19-ға қарсы табиғи емдік агенттерге айналдырмас бұрын қосымша зерттеулер қажет екенін атап 

өтті. 

Кілт сөздер: табиғи қосылыстар, SARS-Cov-2, тиімділігі, дәрілік нысана, молекулалық модельдеу, 

вирустық ақуыздар, Mpro, байланыстырушы аффинирлік. 

 

С.С. Бхуджбал, М. Кале, Б. Чавале 

Идентификация растительных ингибиторов основной протеиназы  

COVID-19 методами молекулярного докинга 

В последние месяцы количество случаев заражения COVID-19 быстро увеличивается и становится 

опасным. Как следствие, несколько медицинских и исследовательских организаций пытаются найти 

эффективное лекарство от вспышки COVID-19. Согласно недавним исследованиям, многие натураль-

ные продукты обладают мощной активностью против COVID-19. Основная цель этой статьи — уста-

новить природные биологически активные соединения с подходящими противовирусными свойствами. 

Lui с соавторами сообщили в своем исследовании, что основная протеаза SARS-Cov-2 присутствует в 

кристаллической структуре, известной как мишень для нового терапевтического препарата. Важно ин-

гибировать основную протеазу SARS-Cov-2, чтобы остановить репликацию вирусных белков. В этом 

исследовании природные соединения были проверены с использованием методов молекулярного моде-

лирования для изучения возможных биоактивных соединений, которые блокируют SARS-Cov-2. В ре-

зультате этих исследований было обнаружено, что многие природные соединения обладают способно-

стью взаимодействовать с вирусными белками и проявляют ингибирующую активность в отношении 

основной протеазы COVID-19 (Mpro). Кроме того, эти природные соединения сравнивали с известными 

противовирусными препаратами, такими как Саквинавир и Ремдесивир. Отмечено, что необходимы до-

полнительные исследования, прежде чем эти потенциальные зацепки можно будет превратить в есте-

ственные терапевтические агенты против COVID-19 для борьбы с эпидемией. 

Ключевые слова: природные соединения, SARS-Cov-2, эффективность, лекарственная мишень, молеку-

лярное моделирование, вирусные белки, Mpro, аффинность связывания. 
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