SUPPLEMENTARY MATERIALS

Spin Catalysis in Photochemical Reactions and Its Applications to Quantum Information Nanotechnology

Boris F. Minaev

Uppsala University, Institute of Physics and Astronomy, Uppsala, Sweden (Author's e-mail: <u>bfmin43@ukr.net</u>)

List of Content

Figure S1. Additional molecular orbitals for α spins of the radical TTM-Cz-Anthracene depicted in Figure 1B. MO 215 β and 215 α are almost identical	S 1
Table S1. TD DFT calculation of the electronic absorption spectrum of the TTM-Cz radical	S 1
Figure S2A. Molecular orbitals for the α spin of the TTM-Cz radical	S2
Figure S2B. Molecular orbitals for the β spin of the TTM-Cz radical	S 3
Figure S3. Optimized quartet state and numeration of atoms in the B radical (TTM-Cz-An)	S 3
Table S2. Spin density, atomic charge (according to Mulliken) and EPR parameters of the quartet state of the B radical (TTM-Cz-An). Long axis a , short axis b , and c is perpendicular axis to the carbazole moiety	S 3
Figure S4. Atomic spin density of the TTM-Cz-An radical in the DFT optimized quartet state	S5

Figure S1. Additional molecular orbitals for α spins of the radical TTM-Cz-Anthracene depicted in Figure 1B. MO 215 β and 215 α are almost identical

State	E(eV)	λ (nm)	f	Configuration state	S^2
			·	function	
D ₁	1.875	661.2	0.0935	0.98(171β -172β)	0.826
D ₂	2.253	550.4	0	0.99(170β -172β)	0.821
D ₃	2.661	465.8	0.0169	0.79(169β -172β)+	0.997
				0.37(168β -172β)	
D_4	2.765	448.4	0	0.80(167β -172β)	1.00
D ₅	2.892	428.8	0.0034	0.72(166β -172β)	0.872
D ₆	2.951	420.0	0.0017	0.74(164β -172β)+	0.922
				+0.53(167β -172β)	
D ₇	2.951	419.9	0.0040	0.79(165β -172β)	0.864
D ₈	3.117	397.7	0.0987	$0.51(172\alpha - 173\alpha) +$	1.39
				0.60(163β -172β)	
D ₉	3.171	391.0	0	0.57(170β -176β)-	2.63
				0.57(170α - 178α)	
D_{10}	3.274	378.6	0.1715	0.57(163β -172β)-	1.11
				$0.57(172\alpha - 173\alpha)$	

Table S1. TD DFT calculation of the electronic absorption spectrum of the TTM-Cz radical

Figure S2A. Molecular orbitals for the α spin of the TTM-Cz radical

Figure S2B. Molecular orbitals for the β spin of the TTM-Cz radical

We have optimized the quartet state of the B radical presented in Figure 1B by the UB3LYP method (Figure S3) and analyzed its atomic spin density (by Mulliken) and EPR parameters: isotropic hyperfine coupling (HFC) constants of magnetic isotope nuclei ¹³C, ³⁵Cl, ¹⁴N and ¹H and anisotropic HFC tensor (Table S2).

Figure S3. Optimized quartet state and numeration of atoms in the B radical (TTM-Cz-An)

Table S2. Spin density, atomic charge (according to Mulliken) and EPR parameters of the quartet state of the B radical (TTM-Cz-An). Long axis a, short axis b, and c is perpendicular axis to the carbazole moiety

Atomic	Spin	Isortopic a _A	Anisotropic	HFC tensor	Components	Atomic
numbers of	density	HFC (MHz)	B _{aa} (MHz)	B _{bb} (MHz)	B _{cc} (MHz)	charge
isotope (A)		constant				(a.u.)
$1^{13}C$	-0.120	-10.98	-9.96	3.92	6.04	0.133
$2^{13}C$	0.093	10.39	-7.14	-5.34	12.48	-0.122
$3^{13}C$	-0.121	-10.99	-10.01	3.91	6.10	0.134
$4^{13}C$	0.760	33.76	-55.24	-55.18	110.42	-0.122
$5^{13}C$	-0.121	-11.12	-10.48	4.09	6.39	0.140
$6^{13}C$	-0.047	-2.26	-5.65	2.30	3.35	0.089

$7^{13}C$	-0.047	-2.30	-5.69	2.31	3.38	0.089
8 ¹³ C	0.094	10.37	-7.12	-5.34	12.46	-0.121
9 ¹³ C	0.096	10.96	-7.25	-5.56	12.81	-0.143
10 ¹³ C	0.097	10.89	-7.34	-5.56	12.90	-0.143
11 ¹³ C	0.094	10.38	-7.11	-5.34	12.45	-0.121
12 ¹³ C	-0.047	-2.87	-5.69	2.30	3.39	0.088
13 ¹³ C	0.084	4.00	-6.69	-5.79	12.48	-0.088
14 ¹ H	-0.002	1,37	-1.20	-0.35	1.55	0.138
15 ³⁵ Cl	0.003	0.06	-2.11	-0.32	2.43	0.021
16 ¹ H	0.002	1.39	-1.21	-0.39	1.60	0.138
17 ³⁵ Cl	0.007	0.29	-2.81	-1.63	4.44	0.012
18^{13} C	0.086	3.98	-6.66	-5.70	12.45	-0.089
19 ¹³ C	-0.047	-2.29	-5.66	2.31	3.35	-0.049
20^{13} C	-0.046	-1.76	-5.71	2.41	3,30	-0.073
21^{13} C	0086	3.51	-6.80	-5.90	12.70	0.268
22^{13} C	-0.048	-1.85	-5.74	2.40	3.34	-0.074
23 ³⁵ Cl	0.003	0.08	-2.16	-0.33	2.49	0.023
24 ¹ H	0.002	1.39	-1.10	-0.40	1.50	0.138
25 ³⁵ Cl	0.003	0.05	-2.16	-0.40	2.56	0.018
26^{13} Cl	0.004	0.0	-2.21	-0.38	2.59	0.018
27 ³⁵ Cl	0.003	0.08	-2.15	-0.34	2.49	0.022
28 ³⁵ Cl	0.007	0.29	-2.81	-1.62	4.44	0.012
29 ¹ H	0.002	1.37	-1.17	-0.30	1.47	0.138
30^{1} H	0.002	1.35	-1.37	-0.40	1.77	0.136
31 ¹⁴ N	0.008	-0.02	-0.78	-0.66	1.44	;
32 ¹ H	0.002	1.36	-1.47	-0.57	2.04	0.135
$33^{13}C$	0.093	10.35	-7.10	-3.35	12.45	-0.121
34 ³⁵ Cl	0.003	0.06	-2.10	-0.32	2.42	0.021
$35^{13}C$	-0.003	0.38	-0.93	0.19	0.74	0.292
36 ¹³ C	0.008	0.57	-0.87	-0.31	0.87	0.040
37 ¹³ C	-0.010	-0.07	-1.44	0.07	1.36	0.051
38 ¹³ C	0.025	1.46	-2.25	-0.81	3.06	0.296
39 ¹³ C	-0.004	-0.21	-0.65	0.19	0.46	-0.131
$40^{13}C$	0.006	0.28	-0.43	-0.29	0.72	-0.099
41 ¹³ C	-0.004	-0.29	-0.59	0.27	0.32	-0.098
$42^{13}C$	0.006	0.23	-0.34	-0.25	0.60	-0.110
43 ¹³ C	0.024	7.26	-3.78	-2.11	5.89	-0.164
44 ¹³ C	-0.062	-6.74	-3.88	0.63	2.25	-0,003
45 ¹⁵ C	0.034	6.61	-3.15	-1.51	4.66	-0.120
46 ¹⁵ C	-0.011	-0.09	-1.82	0.18	1.63	-0.111
47 ¹ H	0.000	0.01	-0.67	-0.43	1.10	0.093
48 ¹ H	0.000	-0.14	-0.31	-0.21	0.52	0.087
49 ¹ H	0.000	0.09	-0.34	0.03	0.31	0.090
50 'H	-0.000	-0.145	-0.72	0.26	0.46	0.101
51 ¹ H	-0.002	-0.98	-2.97	-0.64	3.61	0.100
52 ¹³ C	0.629	25.88	-44.01	-43.79	87.80	-0.079
53 ¹ H	-0.002	-0.78	-3.04	-1.00	4.04	0.103
54 ¹ H	0.001	0.64	-2.97	-0.64	3.61	0.100
55 ¹³ C	-0.086	-6.97	-4.98	1.19	3.79	0.120
56 ¹³ C	-0.104	-7.59	-7.91	2.68	5.23	0.120
57 ¹³ C	0.616	24.57	-42.88	-42.05	84.93	-0.202

I	58 ¹³ C	-0.104	-7.61	-7.96	2.70	5.26	0.120
I	59 ¹³ C	-0.086	-6.94	-4.96	1.18	3.78	0.119
	60 ¹³ C	0.228	8.34	-16.52	-15.55	32.07	-0.153
	61 ¹³ C	0.066	0.70	-6.35	-5.76	12.11	-0.085
I	$62^{13}C$	0.101	2.21	-8.48	-7.98	16.46	-0085
I	63 ¹³ C	0.206	7.16	-14.93	-13.82	28.75	-0.168
	64 ¹ H	-0.026	-13.17	-20.54	-2.82	23.36	0.082
	65 ¹ H	-0.010	-5.29	-6.04	-3.02	9.06	0.083
	66 ¹ H	-0.004	-2.70	-4.06	-2.31	6.37	0.085
	67 ¹ H	-0.006	-2.9	-5.05	-2.17	7.25	0.085
	68 ¹³ H	-0.009	-4.85	-5.40	-3.16	8.56	0.097
	69 ¹ C	0.206	7.11	-14.87	-13.76	28.63	-0.167
	70^{13} C	0.102	2.24	-8.52	-8.04	16.56	-0.085
	71^{13} C	0.067	0.66	-6.30	-5.70	12.00	-0.085
	72 ¹³ C	0.228	8.36	-16.55	-15.58	32.12	-0.153
	73 ¹³ C	-0.009	-4.83	-5.41	-3.08	8.49	0.095
	$74^{-13}C$	-0.006	-3.00	-5.11	-2.10	7.21	0.085
	$75^{13}C$	-0.004	-2.18	-4.20	-2.30	6.32	0.085
I	$76^{13}C$	-0.010	-5.30	-6.08	-3.00	9.08	0.083

Figure S4. Atomic spin density of the TTM-Cz-An radical in the DFT optimized quartet state

Spin density of the most important atoms in the chemically relevant part of the TTM-Cz-An radical in the quartet state is shown in Figure 4S. Spin density at protons is added to the neighboring carbon atoms. It is fully presented in Table S2. Figure S4 clearly shows that 3 spins are distributed mostly on the C4 atom of the TTM radical (0.76) and close lying C1, C3, C5 atoms bear negative spin polarization (-0,126 on each atom). The carbazole moiety has negligible spin density and only benzene ring linked to anthracene shows some small spin polarization. About two non-paired spins are sitting in the anthracene moiety (mostly on 52 and 57 atoms); this corresponds to the triplet excited state of anthracene.

Strong electric polarization in TTM-Cz moiety is seen in Table S2; one can note large negative charge at N atom (-0.743e) and polarization around C4 atom. Essential negative charges at C57, C60, C63, C69 and C72 atoms correspond to the triplet-excited anthracene.